What is CRISPR Cas9?

Have you ever heard about hemophilia? It is a rare genetic disease that disables people from clotting blood. There is not yet therapy for hemophilia. However, a new technology to change the genes related to hemophilia was developed recently. The key point in this new technology is CRISPR-Cas9. It is genetic engineering tool which enables people to cut specific region of DNA and to insert another homologous DNA. Cas9 and guide RNA (gRNA) are important molecules in CRISPR-Cas9.

Cas9, a restriction enzyme, was first discovered in the 1980s. When a virus infects a bacteria, the bacteria cut the intruder’s DNA by using Cas9.

gRNA is made from a small piece of pre-designed RNA sequence. gRNA helps the Cas9 enzyme to cut particular regions of DNA.

CRISPR stands for Clustered Regularly Interspersed Short Palindromic Repeats. Also, Cas means “CRISPR associated.” Even though this method does not destroy surrounding genes, it is possible to change a particular DNA sequence. Treatments for hemophilia using CRISPR-Cas9 are being studied now in the USA. Researchers say, “If a ‘normal blood clotting factor’ gene is inserted into a hemophilia patient, his or her blood will be clotted.”

In addition to hemophilia, CRISPR therapy related to HIV is also being studied. HIV, or Human Immunodeficiency Virus, is a virus that infects the body immune cells and corrupts the immune system.  One typical thing of HIV is that it can go into the immune cell using the specific receptor proteins that are on the surface of the immune cells. Using CRISPR method, scientists found out that getting rid of these proteins makes HIV unable to infect another cell. Then, without the proteins that enables them to infect other cells, HIVs cannot replicate themselves and therefore collapse.

Also, CRISPR is applied to not only curing genetic diseases but also developing plants and animals. By using CRISPR, researchers made MSTN, which limits the growth of pigs, not perform its role. As a result, researchers were able to get a “super pig,” that has more muscles than normal pigs.

The usage of CRISPR can make valuable crops. In 2016, Dr. Yang and his companions made new mushrooms that doesn’t turn into brown by eliminating the enzymes that cause browning in mushrooms. Korean researchers also developed various crops, such as lettuce that has resistance in harmful insects and bean that decreases the level of cholesterol.

Although CRISPR Cas9 is touted through many positive results, it is a controversial topic. For example, CRISPR Cas9 can be used in manipulating embryonic genes, which causes the whole fetus to change. Some countries prohibit this for ethical reasons. In contrast, the Human Fertilisation and Embryology Authority authorized to alter human embryos in the UK in 2016. Even though there are lots of positive effect modifying genes, we must know that there are some ethical issues that we must concern.

References

http://www.alphr.com/bioscience/1001654/darpa-offers-50-million-to-make-crispr-gene-editing-safer
http://news.mk.co.kr/newsRead.php?year=2017&no=461478

http://science.ytn.co.kr/program/program_view.php?s_mcd=0082&s_hcd=0010&key=201706011107334239

https://www.youtube.com/watch?v=2pp17E4E-O8

http://www.yourgenome.org/facts/what-is-crispr-cas9

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s